If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+(0)t+3
We move all terms to the left:
0-(-16t^2+(0)t+3)=0
We add all the numbers together, and all the variables
-(-16t^2+0t+3)=0
We get rid of parentheses
16t^2-0t-3=0
We add all the numbers together, and all the variables
16t^2-1t-3=0
a = 16; b = -1; c = -3;
Δ = b2-4ac
Δ = -12-4·16·(-3)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{193}}{2*16}=\frac{1-\sqrt{193}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{193}}{2*16}=\frac{1+\sqrt{193}}{32} $
| x-0.43=0.81 | | 10x-6=9x+5 | | 6x+82=118 | | 9-2w=-5w-9 | | 6x+82=62 | | 2x(x-4)=90 | | 6x^2=12x=5x+3 | | 6x^2=12x=5x=3 | | 5y-1y=0 | | 15=80x | | 2x2=-5x+3 | | 5r–8=4r+6 | | 15=x80 | | 14=2x-22 | | -5p=-3p+14 | | 5d+-8=13 | | v+79=3 | | -11+4x=49 | | x^2+39^2=89^2 | | 10(x-10)=-100 | | 10x-1x=45 | | a(-3.75)=6.11 | | -10.36/s=4 | | -4=2(-4+k) | | 7-6(1+3b)=-15 | | 4v-5=-49 | | -2(3k+6)=24 | | -2w/5=12 | | 9(1+5f)=-35 | | 64+-5x=14 | | 3=-6+9p | | -8(6+x)=-152 |